
Not another
old fashioned

web framework!

Nuxeo WebEngine unveiled
The content-centric web framework

“Nuxeo WebEngine is a lightweight,
content-centric web framework to quickly

build and deliver slices of web”

what the web
really is about?

URL
HTML
CSS

RSS / ATOM
JavaScript

URL
HTML
CSS

RSS / ATOM
JavaScript

content

content

content

why WebEngine?

because URLs matter

because you have content
to expose on the web

because you want more
than web publishing

content repository
ecm platform
many services and features
flexible and modular
components everywhere

do you need anything else
to create your content-
oriented web apps?

sure!

dynamic
horizontal scaling
easy programing model
designed for the web

and what about that?

lightweight framework
content-centric
extensible with scripting
components architecture
lightspeed startup

Nuxeo WebEngine
less abstraction, more control

Overview

Easier and faster development for content-oriented
web applications

leverage a complete ECM platform

...and a powerful component model

focus on content

built on REST (HTTP means something)

no JSF, EJBs, Java EE required

no magic

less abstraction

more control

the browser is a platform

widgets are the key to expose your content

scripting for business logic

fast code/test cycle

smart & elegant

Designed by web’s children,
for the web you like

Content is king

URL matters

REST everywhere, because the web has a soul

and... in developers we trust

WebEngine Essentials

easy MVC

smart URL dispatcher

flexible views on content

powerful templating language — Freemarker

scripting for logic — Groovy, JS, Python, Ruby, etc.

a real MVC model

View

Templates
(Freemarker)

Model

Content
DocumentModel
from Nuxeo Core

Controler

Scripts

or Java Code

smart URLs

/articles/cars/porsche/cs/overview@@view?param=value

or simply:

/articles/cars/bmw/s3/overview

(because the view action is implied)

content path
(in the repository)

action
selector

parametersapp ID

smart URLs: mappings

You can also define mappings to control your URLs

<mapping pattern="/user/(?username:[a-zA-Z0-9]+)$">
 <script>/users/user_detail.groovy</script>
</mapping>

Will make the URL /user/JohnDoe call the script user_detail.groovy,
with the variable username (having the value“JohnDoe”) automatically
passed to it.

@@actions

an action...

points to a template, a script or a Java class

has a guard (ex: permission)

is bound to a content type

belongs to a category

is prefixed in the URL by @@ (ex: @@print)

actions represent a powerful way to bind views and
logic to content

@@actions

<object id="WikiPage" extends="WikiObject">
 <actions>
 <action id="view_content"
 enabled="true">
 <permission expression="Read"/>
 <category>tab</category>
 </action>

 <action id="show_comments"
 enabled="true"
 script="show_comments.groovy">
 <permission expression="Read"/>
 <category>tab</category>
 </action>
 </actions>
</object>

New action view_content on
WikiObjects.
WebEngine will look for a template
called view_content.ftl and use it as
view.

New action show_comments on
WikiObjects.
As a script is defined, WebEngine will
execute the script show_comments.groovy
and return the result.

#templates

based on the FreeMarker engine

template inheritance

easy access to content

extensible context (variable injection)

and... extensible Nuxeo’s style! You can use your
preferred template engine (PHP anyone?)

Scripting

scripts can access all services of the Nuxeo Platform
services

several scripting languages included — Groovy,
Python, JavaScript, Ruby, etc. (thank you, JSR-233!)

easy logic, powerful features

and... the strength of the Java VM

here is how you list the
comments on a document

//get the current document as commentable document
cdoc = Document.getAdapter(CommentableDocument)

//render the template passing named variables
Context.render("comments/show_comments.ftl",
 ['comments': cdoc.comments])

or perform a query

//define your query
pquery = "SELECT * FROM Document WHERE
 (dc:created BETWEEN DATE '2008-01-01' AND DATE '2008-12-31')
 AND (ecm:path STARTSWITH '/')"

//perform the query and get the results
results = Request.query(pquery)

or list a folder’s content

//Document is the current content object
docchildren = Document.children

MVC in your hands

#template

View

DocumentModel
(from the core)

Model

@@action

Controler

Based on a complete
ECM platform

content store (Nuxeo Core, JCR-based)

advanced Access Control (through permissions)

enterprise-class authentication & user/group
management

indexing and search

comments, relations, etc.

and a dozen more! ;-)

Components everywhere

hot-reloadable extension points

compose your apps dynamically with plugins

works with Jetty, JBoss and GlassFish3

and... Nuxeo style! :-)

showtime

Thank you!
www.nuxeo.com

www.nuxeo.org/webengine

www.nuxeo.org/discussions

http://www.nuxeo.com
http://www.nuxeo.com
http://www.nuxeo.org/webengine
http://www.nuxeo.org/webengine
http://www.nuxeo.org/discussions
http://www.nuxeo.org/discussions

